All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The dimension of the feasible region of pattern densities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133883" target="_blank" >RIV/00216224:14330/23:00133883 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.muni.cz/eurocomb/article/view/35599" target="_blank" >https://journals.muni.cz/eurocomb/article/view/35599</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/CZ.MUNI.EUROCOMB23-065" target="_blank" >10.5817/CZ.MUNI.EUROCOMB23-065</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The dimension of the feasible region of pattern densities

  • Original language description

    A classical result of Erdős, Lovász and Spencer from the late 1970s asserts that the dimension of the feasible region of homomorphic densities of graphs with at most k vertices in large graphs is equal to the number of connected graphs with at most k vertices. Glebov et al. showed that pattern densities of indecomposable permutations are independent, i.e., the dimension of the feasible region of densities of k-patterns is at least the number of non-trivial indecomposable permutations of size at most k. We identify a larger set of permutations, which are called Lyndon permutations, whose pattern densities are independent, and show that the dimension of the feasible region of densities of k-patterns is equal to the number of non-trivial Lyndon permutations of size at most k.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    European Conference on Combinatorics, Graph Theory and Applications

  • ISBN

  • ISSN

    2788-3116

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    471-477

  • Publisher name

    MUNI Press

  • Place of publication

    Brno

  • Event location

    Praha

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article