Flow injection tyrosinase biosensor for direct determination of acetaminophen in human urine
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F19%3A39914601" target="_blank" >RIV/00216275:25310/19:39914601 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00216-019-01687-4" target="_blank" >https://link.springer.com/article/10.1007/s00216-019-01687-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00216-019-01687-4" target="_blank" >10.1007/s00216-019-01687-4</a>
Alternative languages
Result language
angličtina
Original language name
Flow injection tyrosinase biosensor for direct determination of acetaminophen in human urine
Original language description
An amperometric biosensor compatible with a flow injection analysis (FIA) for highly selective determination of acetaminophen (APAP) in a sample of human urine was developed. This biosensor is also suitable for use in the routine pharmaceutical practice. To prove this statement, two different commercially available pharmaceutical formulations were analyzed. This nano-(bio)electroanalytical device was made from a commercially available screen-printed carbon electrode covered by a thin layer of non-functionalized graphene (NFG) as amperometric transducer. A biorecognition layer was prepared from mushroom (Agaricus bisporus) tyrosinase (EC 1.14.18.1) cross-linked using glutaraldehyde, where resulting aggregates were covered by Nafion (R), a known ion exchange membrane. Owing to the use of tyrosinase and presence of NFG, the developed analytical instrument is able to measure even at potentials of 0 V. Linear ranges differ according to choice of detection potential, namely up to 130 mu mol L-1 at 0 V, up to 90 mu mol L-1 at -0.1 V, and up to 70 mu mol L-1 at -0.15 V. The first mentioned linear range is described by the equation I-p [mu A] = 0.236-0.1984c [mu mol L-1] and correlation coefficient r = 0.9987; this equation was used to quantify the content of APAP in each sample. The limit of detection of APAP was estimated to be 1.1 mu mol L-1. A recovery of 96.8% (c = 25 mu mol L-1, n = 5 measurements) was calculated. The obtained results show that FIA is a very selective method for APAP determination, being comparable to the chosen reference method of reversed-phase high-performance liquid chromatography.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analytical and Bioanalytical Chemistry
ISSN
1618-2642
e-ISSN
—
Volume of the periodical
411
Issue of the periodical within the volume
11
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
2415-2424
UT code for WoS article
000464715500016
EID of the result in the Scopus database
—