All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Sinyukov's Equations in Their Relation to a Curvature Operator of Second Kind

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F14%3APU112153" target="_blank" >RIV/00216305:26110/14:PU112153 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-55361-5_28" target="_blank" >http://dx.doi.org/10.1007/978-3-642-55361-5_28</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-55361-5_28" target="_blank" >10.1007/978-3-642-55361-5_28</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Sinyukov's Equations in Their Relation to a Curvature Operator of Second Kind

  • Original language description

    Many authors have studied Riemannian manifolds admitting a geodesic mapping. Fundamental results of the theory of geodesic mapping were settled by Sinyukov. In the present paper we analyze the Sinykov equations of the geodesic mappings of Riemannian manifolds by using the curvature operator of the second kind. This approach to the study of geodesic mapping is essentially new.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Algebra, Geometry and Mathematical Physics

  • ISBN

    978-3-642-55361-5

  • Number of pages of the result

    5

  • Pages from-to

    489-494

  • Number of pages of the book

    684

  • Publisher name

    Springer Berlin Heidelberg

  • Place of publication

    Mulhouse, France

  • UT code for WoS chapter