On Sinyukov's Equations in Their Relation to a Curvature Operator of Second Kind
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F14%3APU112153" target="_blank" >RIV/00216305:26110/14:PU112153 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-55361-5_28" target="_blank" >http://dx.doi.org/10.1007/978-3-642-55361-5_28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-55361-5_28" target="_blank" >10.1007/978-3-642-55361-5_28</a>
Alternative languages
Result language
angličtina
Original language name
On Sinyukov's Equations in Their Relation to a Curvature Operator of Second Kind
Original language description
Many authors have studied Riemannian manifolds admitting a geodesic mapping. Fundamental results of the theory of geodesic mapping were settled by Sinyukov. In the present paper we analyze the Sinykov equations of the geodesic mappings of Riemannian manifolds by using the curvature operator of the second kind. This approach to the study of geodesic mapping is essentially new.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Algebra, Geometry and Mathematical Physics
ISBN
978-3-642-55361-5
Number of pages of the result
5
Pages from-to
489-494
Number of pages of the book
684
Publisher name
Springer Berlin Heidelberg
Place of publication
Mulhouse, France
UT code for WoS chapter
—