On Sinyukov's Equations in Their Relation to a Curvature Operator of Second Kind
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F14%3A33151200" target="_blank" >RIV/61989592:15310/14:33151200 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-55361-5_28" target="_blank" >http://dx.doi.org/10.1007/978-3-642-55361-5_28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-55361-5_28" target="_blank" >10.1007/978-3-642-55361-5_28</a>
Alternative languages
Result language
angličtina
Original language name
On Sinyukov's Equations in Their Relation to a Curvature Operator of Second Kind
Original language description
Many authors have studied Riemannian manifolds admitting a geodesic mapping. Fundamental results of the theory of geodesic mapping were settled by Sinyukov. In the present paper we analyze the Sinykov equations of the geodesic mappings of Riemannian manifolds by using the curvature operator of the second kind. This approach to the study of geodesic mapping is essentially new.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algebra, Geometry and Mathematical Physics
ISBN
978-3-642-55360-8
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
489-494
Publisher name
Springer
Place of publication
Heidelberg
Event location
Mulhouse, France
Event date
Oct 24, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000347610400028