A digital pretopology and one of its quotients
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F12%3APU91539" target="_blank" >RIV/00216305:26210/12:PU91539 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A digital pretopology and one of its quotients
Original language description
We introduce a certain pretopology on the digital plane $mathbb Z^2$ and present a digital analogue of the Jordan curve theorem for for it. We then discuss a topology on $mathbb Z^2$ which is shown to be a quotient pretopology of the pretopology introduced. This fact is used to prove a digital Jordan curve theorem also for this topology.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology Proceedings
ISSN
0146-4124
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
13-25
UT code for WoS article
—
EID of the result in the Scopus database
—