All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Alexandroff pretopologies for structuring the digital plane

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU119234" target="_blank" >RIV/00216305:26210/17:PU119234 - isvavai.cz</a>

  • Result on the web

    <a href="https://ac.els-cdn.com/S0166218X16302670/1-s2.0-S0166218X16302670-main.pdf?_tid=b5db0aee-e1e1-11e7-b51a-00000aab0f02&acdnat=1513374708_82e3d74b75420ea8adca800b18dc4e43" target="_blank" >https://ac.els-cdn.com/S0166218X16302670/1-s2.0-S0166218X16302670-main.pdf?_tid=b5db0aee-e1e1-11e7-b51a-00000aab0f02&acdnat=1513374708_82e3d74b75420ea8adca800b18dc4e43</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dam.2016.06.002" target="_blank" >10.1016/j.dam.2016.06.002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Alexandroff pretopologies for structuring the digital plane

  • Original language description

    We explore the possibility of employing Alexandroff pretopologies as structures on the digital plane Z^2 convenient for the study of geometric and topological properties of digital images. These pretopologies are known to be in one-to-one correspondence with reflexive binary relations so that graph-theoretic methods may be used when investigating them. We discuss such Alexandroff pretopologies on Z2 that possess a rich variety of digital Jordan curves obtained as circuits in a natural graph with the vertex set Z2. Of these pretopologies, we focus on the minimal ones and study their quotient pretopologies on Z2 which are shown to allow for various digital Jordan curve theorems. We also develop a method for identifying Jordan curves in the minimal pretopological spaces by using Jordan curves in one of their quotient spaces. Using this method, we conclude the paper with proving a digital Jordan curve theorem for the minimal pretopologies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

    1872-6771

  • Volume of the periodical

    216

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    323-334

  • UT code for WoS article

    000390504100002

  • EID of the result in the Scopus database

    2-s2.0-84977618285