All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CONVENIENT PRETOPOLOGIES ON Z^2

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU128121" target="_blank" >RIV/00216305:26210/18:PU128121 - isvavai.cz</a>

  • Result on the web

    <a href="http://static.bsu.az/w24/TWMS%20V9%20N1/pp40-51.pdf" target="_blank" >http://static.bsu.az/w24/TWMS%20V9%20N1/pp40-51.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    CONVENIENT PRETOPOLOGIES ON Z^2

  • Original language description

    We deal with pretopologies on the digital plane Z2 convenient for studying and processing digital pictures. We introduce a certain natural graph on the vertex set Z2 whose cycles are eligible for Jordan curves in the digital plane and discuss the pretopologies on Z2 with respect to which these cycles are Jordan curves.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    TWMS Journal of Pure and Applied Mathematics

  • ISSN

    2076-2585

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    AZ - AZERBAIJAN

  • Number of pages

    12

  • Pages from-to

    40-51

  • UT code for WoS article

    000432938900004

  • EID of the result in the Scopus database