A Jordan curve theorem with respect to a pretopology on Z^2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F13%3APU101371" target="_blank" >RIV/00216305:26210/13:PU101371 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
A Jordan curve theorem with respect to a pretopology on Z^2
Original language description
We study a pretopology on $mathbb Z^2$ having the property that the Khalimsky topology is one of its quotient pretopologies. Using this fact, we prove an analogue of the Jordan curve theorem for this pretopology thus showing that such a pretopology provides a large variety of digital Jordan curves. Some consequences of this result are discussed, too.
Czech name
A Jordan curve theorem with respect to a pretopology on Z^2
Czech description
We study a pretopology on $mathbb Z^2$ having the property that the Khalimsky topology is one of its quotient pretopologies. Using this fact, we prove an analogue of the Jordan curve theorem for this pretopology thus showing that such a pretopology provides a large variety of digital Jordan curves. Some consequences of this result are discussed, too.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Computer Mathematics
ISSN
0020-7160
e-ISSN
—
Volume of the periodical
90
Issue of the periodical within the volume
8
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
1618-1628
UT code for WoS article
—
EID of the result in the Scopus database
—