Jordan curves in the digital plane
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU98350" target="_blank" >RIV/00216305:26210/14:PU98350 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Jordan curves in the digital plane
Original language description
We discuss certain interrelated pretopologies on the digital plane $mathbb Z^2$ including the Khalimsky topology and several other topologies on $mathbb Z^2$. We present a digital analogue of the Jordan curve theorem for each of the pretopologies to demonstrate that they can provide background structures on $mathbb Z^2$ convenient for the study of geometric and topological properties of two-dimensional digital images.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Malaysian Mathematical Sciences Society
ISSN
0126-6705
e-ISSN
2180-4206
Volume of the periodical
37
Issue of the periodical within the volume
2
Country of publishing house
MY - MALAYSIA
Number of pages
16
Pages from-to
295-310
UT code for WoS article
000334390400001
EID of the result in the Scopus database
2-s2.0-84897878274