Motor Failure Detection for Multicopters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU110246" target="_blank" >RIV/00216305:26220/14:PU110246 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Motor Failure Detection for Multicopters
Original language description
The contribution is focused on the problem of motor failure detection for multicopters using sensors usually used for state estimation. Such an algorithm is an essential part of the safety system which would mitigate the consequences of single motor failure of multicopter. The detection algorithm is based on set of Kalman filters for state estimation. Each Kalman filter has different prediction model (each models a different motor failure). The magnitude of corrections applied in the update step of Kalman filter is used as a measure of model correspondence. The algorithm was tested on simulated data for two different scenarios and shows sufficient performance in both cases.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JB - Sensors, detecting elements, measurement and regulation
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings Of The 20th Conference Student EEICT 2014 Volume 3
ISBN
978-80-214-4924-4
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
52-56
Publisher name
LITERA Brno
Place of publication
Brno
Event location
Brno
Event date
Apr 24, 2014
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—