An application of a diffeomorphism theorem to Volterra integral operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU129227" target="_blank" >RIV/00216305:26220/18:PU129227 - isvavai.cz</a>
Result on the web
<a href="https://projecteuclid.org/euclid.die/1526004033" target="_blank" >https://projecteuclid.org/euclid.die/1526004033</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An application of a diffeomorphism theorem to Volterra integral operator
Original language description
Using global diffeomorphism theorem based on duality mapping and mountain geometry, we investigate the properties of the Volterra operator given pointwise for t is an element of [0,1] by V(x) (t) = x(t) + integral(t)(0) v(t, tau, x(tau))d tau, x(0) = 0.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential and Integral Equations
ISSN
0893-4983
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
7-8
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
621-642
UT code for WoS article
000430759100007
EID of the result in the Scopus database
2-s2.0-85046977938