All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An application of a diffeomorphism theorem to Volterra integral operator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU129227" target="_blank" >RIV/00216305:26220/18:PU129227 - isvavai.cz</a>

  • Result on the web

    <a href="https://projecteuclid.org/euclid.die/1526004033" target="_blank" >https://projecteuclid.org/euclid.die/1526004033</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    An application of a diffeomorphism theorem to Volterra integral operator

  • Original language description

    Using global diffeomorphism theorem based on duality mapping and mountain geometry, we investigate the properties of the Volterra operator given pointwise for t is an element of [0,1] by V(x) (t) = x(t) + integral(t)(0) v(t, tau, x(tau))d tau, x(0) = 0.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Differential and Integral Equations

  • ISSN

    0893-4983

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    7-8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    621-642

  • UT code for WoS article

    000430759100007

  • EID of the result in the Scopus database

    2-s2.0-85046977938