All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Single-shot super-resolution quantitative phase imaging allowed by coherence gate shaping

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU148033" target="_blank" >RIV/00216305:26620/23:PU148033 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.aip.org/aip/app/article/8/4/046103/2882470/Single-shot-super-resolution-quantitative-phase" target="_blank" >https://pubs.aip.org/aip/app/article/8/4/046103/2882470/Single-shot-super-resolution-quantitative-phase</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0127950" target="_blank" >10.1063/5.0127950</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Single-shot super-resolution quantitative phase imaging allowed by coherence gate shaping

  • Original language description

    Biomedical and metasurface researchers repeatedly reach for quantitative phase imaging (QPI) as their primary imaging technique due to its high-throughput, label-free, quantitative nature. So far, very little progress has been made toward achieving super-resolution in QPI. However, the possible super-resolving QPI would satisfy the need for quantitative observation of previously unresolved biological specimen features and allow unprecedented throughputs in the imaging of dielectric metasurfaces. Here we present a method capable of real-time super-resolution QPI, which we achieve by shaping the coherence gate in the holographic microscope with partially coherent illumination. Our approach is based on the fact that the point spread function (PSF) of such a system is a product of the diffraction-limited spot and the coherence-gating function, which is shaped similarly to the superoscillatory hotspot. The product simultaneously produces the PSF with a super-resolution central peak and minimizes sidelobe effects commonly devaluating the superoscillatory imaging. The minimization of sidelobes and resolution improvement co-occur in the entire field of view. Therefore, for the first time, we achieve a single-shot widefield super-resolution QPI. We demonstrate here resolution improvement on simulated as well as experimental data. A phase resolution target image shows a resolving power improvement of 19%. Finally, we show the practical feasibility by applying the proposed method to the imaging of biological specimens.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APL Photonics

  • ISSN

    2378-0967

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85152958944