On local time-dependent symmetries of integrable evolution equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F00%3A00000045" target="_blank" >RIV/47813059:19610/00:00000045 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On local time-dependent symmetries of integrable evolution equations
Original language description
We consider a scalar (1+1)-dimensional evolution equation of order n=>2 which possesses time-independent formal symmetry (i.e. it is integrable in the sense of the symmetry approach), shared by all local generalized time-independent symmetries of this equation. We show that if such an equation possesses the nontrivial canonical conserved density $rhosb m, min{-1,1,2,cdots}$, then it has no polynomial-in-time local generalized symmetries (except time-independent ones) of order higher than n+m+1. Some generalizations of this result and related results are also presented. Using them, we find all local generalized time-dependent symmetries of the Harry Dym and mKdV equations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Institute of Mathematics of the Ukrainian National Academy of Sciences. Mathematics and its Applications
ISBN
ISBN966-02-1444
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
Institute of Mathematics of the Ukrainian National Academy of Sciences, Kiev, Ukraine
Place of publication
Kiev, Ukraine
Event location
—
Event date
—
Type of event by nationality
—
UT code for WoS article
—