The bitransitive continuous maps of the interval are conjugate to maps extremelly chaotic a.e.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000096" target="_blank" >RIV/47813059:19610/02:00000096 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The bitransitive continuous maps of the interval are conjugate to maps extremelly chaotic a.e.
Original language description
Let $f$ be a continuous map of the interval $[0,1]$ to itself such that $f^2$ is topologically transitive. The author proves that $f$ is topologically conjugate to a continuous map $g$ of $[0,1]$ to itself which satisfies the following property. There isa subset $S$ of $[0,1]$ of Lebesgue measure one such that for every pair of distinct points $x in S$ and $y in S,$ $limsup_{n to infty} |g^n(x)-g^n(y)|=1$ and $liminf_{n to infty} |g^n(x)-g^n(y)|=0.$
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F0859" target="_blank" >GA201/00/0859: Dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Universitatis Comenianae
ISSN
ISSN0862-9544
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
2
Country of publishing house
SK - SLOVAKIA
Number of pages
4
Pages from-to
229-232
UT code for WoS article
—
EID of the result in the Scopus database
—