All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A randomized algorithm for finding a maximum clique in the visibility graph of a simple polygon

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43925391" target="_blank" >RIV/49777513:23520/15:43925391 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2516" target="_blank" >http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2516</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A randomized algorithm for finding a maximum clique in the visibility graph of a simple polygon

  • Original language description

    We present a randomized algorithm to compute a clique of maximum size in the visibility graph $G$ of the vertices of a simple polygon $P$. The input of the problem consists of the visibility graph $G$, a Hamiltonian cycle describing the boundary of $P$,and a parameter $delta in (0,1)$ controlling the probability of error of the algorithm. The algorithm does not require the coordinates of the vertices of $P$. With probability at least $1-delta$ the algorithm runs in begin{math} Oleft( frac{|E(G)|^2}{omega(G)}log (1/delta) right) end{math} time and returns a maximum clique, where $omega(G)$ is the number of vertices in a maximum clique in $G$. A deterministic variant of the algorithm takes $O(|E(G)|^2)$ time and always outputs a maximum sizeclique. This compares well to the best previous algorithm by Ghosh textit{et al.}~(2007) for the problem, which is deterministic and runs in $O(|V(G)|^2 , |E(G)|)$ time.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: New excellence in human resources</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE

  • ISSN

    1365-8050

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000352198400001

  • EID of the result in the Scopus database