Coloring the cliques of line graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932191" target="_blank" >RIV/49777513:23520/17:43932191 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2016.11.011" target="_blank" >http://dx.doi.org/10.1016/j.disc.2016.11.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2016.11.011" target="_blank" >10.1016/j.disc.2016.11.011</a>
Alternative languages
Result language
angličtina
Original language name
Coloring the cliques of line graphs
Original language description
The weak chromatic number, or clique chromatic number (CCHN) of a graph is the minimum number of colors in a vertex coloring, such that every maximal clique gets at least two colors. The weak chromatic index, or clique chromatic index (CCHI) of a graph is the CCHN of its line graph. Most of the results here are upper bounds for the CCHI, as functions of some other graph parameters, and contrasting with lower bounds in some cases. Algorithmic aspects are also discussed; the main result within this scope (and in the paper) shows that testing whether the CCHI of a graph equals 2 is NP-complete.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
340
Issue of the periodical within the volume
11
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
2641-2649
UT code for WoS article
000411297200004
EID of the result in the Scopus database
2-s2.0-85007497564