Prediction of pork belly composition using the computer vision method on transverse cross-sections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F15%3A69060" target="_blank" >RIV/60460709:41210/15:69060 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/aoas-2015-0034" target="_blank" >http://dx.doi.org/10.1515/aoas-2015-0034</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/aoas-2015-0034" target="_blank" >10.1515/aoas-2015-0034</a>
Alternative languages
Result language
angličtina
Original language name
Prediction of pork belly composition using the computer vision method on transverse cross-sections
Original language description
The objective of this study was to identify the pig belly characteristics and to develop regression equations predicting its composition. Based on video image and chemical analysis of 216 bellies, the predictive variables were selected according to theirrelation to chemically determined belly lipid contents. To estimate the belly fat percentage (BF%), the two best equations constructed were: Equation 1: BF% = 49.960 ? 0,7174 x SHME2 + 0,5047 x HE2A (R2 = 0,66, RMSE = 3.22), Equation 2: BF% = 43,888 ? 0,6014 x SHME2 + 0,4769 x HE2A + 0,0014 x ARTO2 ? 0,2697 x HE3A (R2 = 0,70, RMSE = 2,25), where: SHME2 = lean meat percentage area of the belly 2 from total cut area, HE2A = the Belly2 height at point 1, ARTO2 = the Belly2 total cut area, HE3A = the Belly3 height at point 1. Compared to lean meat, the percentage of belly fat (BF%) appears to be a more appropriate criterion for the objective evaluation of belly composition due to the simplicity and accuracy of the final regression equation
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
GG - Zootechnics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Animal Science
ISSN
2300-8733
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
1009-1018
UT code for WoS article
000365834200016
EID of the result in the Scopus database
—