Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43925155" target="_blank" >RIV/60461373:22310/22:43925155 - isvavai.cz</a>
Alternative codes found
RIV/68378041:_____/23:00583165 RIV/00064203:_____/23:10442868
Result on the web
<a href="https://www.tandfonline.com/doi/full/10.1080/10255842.2022.2058875" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10255842.2022.2058875</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10255842.2022.2058875" target="_blank" >10.1080/10255842.2022.2058875</a>
Alternative languages
Result language
angličtina
Original language name
Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes
Original language description
Titanium surface treated with titanium oxide nanotubes was used in many studies to quantify the effect of surface topography on cell fate. However, the predicted optimal diameter of nanotubes considerably differs among studies. We propose a model that explains cell adhesion to a nanostructured surface by considering the deformation energy of cell protrusions into titanium nanotubes and the adhesion to the surface. The optimal surface topology is defined as a geometry that gives the membrane a minimum energy shape. A dimensionless parameter, the cell interaction index, was proposed to describe the interplay between the cell membrane bending, the intrinsic curvature, and the strength of cell adhesion. Model simulation shows that an optimal nanotube diameter ranging from 20 nm to 100 nm (cell interaction index between 0.2 and 1, respectively) is feasible within a certain range of parameters describing cell membrane adhesion and bending. The results indicate a possibility to tune the topology of a nanostructural surface in order to enhance the proliferation and differentiation of cells mechanically compatible with the given surface geometry while suppressing the growth of other mechanically incompatible cells. © 2022 Informa UK Limited, trading as Taylor & Francis Group.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Methods in Biomechanics and Biomedical Engineering
ISSN
1025-5842
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
april
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000778467000001
EID of the result in the Scopus database
2-s2.0-85128231530