Astaxanthin Extract from Haematococcus pluvialis and Its Fractions of Astaxanthin Mono- and Diesters Obtained by CCC Show Differential Antioxidant and Cytoprotective Effects on Naïve-Mouse Spleen Cells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F23%3A00573903" target="_blank" >RIV/61388971:_____/23:00573903 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12310/23:43907337 RIV/00216208:11160/23:10471429
Result on the web
<a href="https://www.mdpi.com/2076-3921/12/6/1144" target="_blank" >https://www.mdpi.com/2076-3921/12/6/1144</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/antiox12061144" target="_blank" >10.3390/antiox12061144</a>
Alternative languages
Result language
angličtina
Original language name
Astaxanthin Extract from Haematococcus pluvialis and Its Fractions of Astaxanthin Mono- and Diesters Obtained by CCC Show Differential Antioxidant and Cytoprotective Effects on Naïve-Mouse Spleen Cells
Original language description
Carotenoids are the most abundant lipid-soluble phytochemicals and are used as dietary supplements to protect against diseases caused by oxidative stress. Astaxanthin, a xanthophyll carotenoid, is a very potent antioxidant with numerous beneficial effects on cellular functions and signaling pathways. In this study, using spleen cells from healthy Balb/c mice, we report the bio-functional effects of an astaxanthin-rich extract (EXT) prepared from the microalga Haematococcus pluvialis and its astaxanthin monoesters-rich fraction (ME) and astaxanthin diesters-rich fraction (DE) obtained by fractionation of EXT using countercurrent chromatography (CCC). After incubation under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen), the viability of untreated splenocytes, as determined by the trypan blue exclusion assay, the MTT assay, and the neutral red assay, decreases to approximately 75% after 24 h compared with naïve splenocytes. This effect correlated with the decrease in mitochondrial membrane potential and the transition of ~59% of cells to the early stage of apoptosis, as well as with the decreased ROS production, indicating that hyperoxia in cell-culture deteriorates cell functions. They are restored or stimulated by co-cultivation with EXT, ME, and DE up to 10 µg/mL in the order EXT > DE > ME, suggesting that esterification increases bioavailability to cells in vitro. ROS and H2O2 concentrations reflect mRNA transcriptional activity of Nrf2, superoxide dismutase 1 (SOD1), catalase, and glutathione peroxidase 1, as well as SOD-mediated ROS conversion, whereas they inversely correlate with iNOS-mediated NO production. The highest-tested concentration of EXT, ME, and DE (40 µg/mL) is detrimental to cells, probably because of the overwhelming scavenging activity of astaxanthin and its esters for the reactive oxygen/nitrogen species required for cellular functions and signal transduction at low physiological concentrations. In this study, we demonstrate that differential activities of ME and DE contribute to the final antioxidant and cytoprotective effects of astaxanthin extract, which is beneficial in preventing a wide range of ROS-induced adverse effects, with DE being more effective. In addition, the selection of physioxia-like conditions for pharmacological research is highlighted.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10606 - Microbiology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Antioxidants
ISSN
2076-3921
e-ISSN
2076-3921
Volume of the periodical
12
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
1144
UT code for WoS article
001013876400001
EID of the result in the Scopus database
2-s2.0-85163822154