Spectral geometry in a rotating frame: Properties of the ground state
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA210255I" target="_blank" >RIV/61988987:17310/20:A210255I - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/20:00525005 RIV/68407700:21340/20:00346530
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0022247X20302924?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0022247X20302924?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2020.124130" target="_blank" >10.1016/j.jmaa.2020.124130</a>
Alternative languages
Result language
angličtina
Original language name
Spectral geometry in a rotating frame: Properties of the ground state
Original language description
We investigate spectral properties of the operator describing a quantum particle confined to a planar domain $Omega$ rotating around a fixed point with an angular velocity $omega$ and demonstrate several properties of its principal eigenvalue $lambda_1$. We show that as a function of rotation center position it attains a unique maximum and has no other extrema provided the said position is unrestricted. Furthermore, we show that as a function $omega$, the eigenvalue attains a maximum at $omega=0$, unique unless $Omega$ has a full rotational symmetry. Finally, we present an upper bound to the difference $lambda_{1, Omega}^omega -lambda_{1, B}^omega$, where the last named eigenvalue corresponds to a disk of the same area as $Omega$.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
489
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
1-13
UT code for WoS article
000534403700014
EID of the result in the Scopus database
2-s2.0-85082862487