DWSR: an architecture optimization framework for adaptive super-resolution neural networks based on meta-heuristics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256846" target="_blank" >RIV/61989100:27240/24:10256846 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10462-023-10648-4" target="_blank" >https://link.springer.com/article/10.1007/s10462-023-10648-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10462-023-10648-4" target="_blank" >10.1007/s10462-023-10648-4</a>
Alternative languages
Result language
angličtina
Original language name
DWSR: an architecture optimization framework for adaptive super-resolution neural networks based on meta-heuristics
Original language description
Despite recent advancements in super-resolution neural network optimization, a fundamental challenge remains unresolved: as the number of parameters is reduced, the network's performance significantly deteriorates. This paper presents a novel framework called the Depthwise Separable Convolution Super-Resolution Neural Network Framework (DWSR) for optimizing super-resolution neural network architectures. The depthwise separable convolutions are introduced to reduce the number of parameters and minimize the impact on the performance of the super-resolution neural network. The proposed framework uses the RUNge Kutta optimizer (RUN) variant (MoBRUN) as the search method. MoBRUN is a multi-objective binary version of RUN, which balances multiple objectives when optimizing the neural network architecture. Experimental results on publicly available datasets indicate that the DWSR framework can reduce the number of parameters of the Residual Dense Network (RDN) model by 22.17% while suffering only a minor decrease of 0.018 in Peak Signal-to-Noise Ratio (PSNR), the framework can reduce the number of parameters of the Enhanced SRGAN (ESRGAN) model by 31.45% while losing only 0.08 PSNR. Additionally, the framework can reduce the number of parameters of the HAT model by 5.38% while losing only 0.02 PSNR.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Artificial Intelligence Review
ISSN
0269-2821
e-ISSN
1573-7462
Volume of the periodical
57
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
—
UT code for WoS article
001161054000003
EID of the result in the Scopus database
—