All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

States on perfect bounded Rl-monoids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F08%3A00005598" target="_blank" >RIV/61989592:15310/08:00005598 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    States on perfect bounded Rl-monoids

  • Original language description

    Bounded Rl-monoids generalize GMV-algebras, pseudo BL-algebras and Heyting algebras. States on such monoids are analogues of probability measures. The existence of states is connected with the existence of maximal filters which are normal. We prove thatevery good and normal perfect Rl-monoid, such that the GMV-algebra of its regular elements is symmetric, admits a (unique) state.

  • Czech name

    Stavy na perfektních ohraničených Rl-monoidech

  • Czech description

    Ohraničené Rl-monoidy zobecňují GMV-algebry, pseudo BL-algebry a Heytingovy algebry. Stavy na takových monoidech jsou analogie pravděpodobnostních měr. Dokazujeme, že každý dobrý a normální perfektní Rl-monoid, takový, že GMV-algebra jeho regulárních prvků je symetrická, připouští (jediný) stav.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Contributions to General Algebra 18

  • ISBN

    978-3-7084-0303-8

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    Verlag J. Heyn

  • Place of publication

    Klagenfurt

  • Event location

  • Event date

  • Type of event by nationality

  • UT code for WoS article