All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Excitation Wavelength- and Medium-Dependent Photoluminescence of Reduced Nanostructured TiO2 Films

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73594939" target="_blank" >RIV/61989592:15310/19:73594939 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.9b01727" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.9b01727</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.9b01727" target="_blank" >10.1021/acs.jpcc.9b01727</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Excitation Wavelength- and Medium-Dependent Photoluminescence of Reduced Nanostructured TiO2 Films

  • Original language description

    The performance of TiO2 nanomaterials in solar energy conversion applications can be tuned by means of thermal treatments in reducing atmospheres, which introduce defects (such as oxygen vacancies), allowing, for instance, a better charge transport or a higher photocatalytic activity. The characterization of these defects and the understanding of their role are pivotal to carefully engineer the properties of TiO2, and among various methods, they have been addressed by photoluminescence (PL) spectroscopy. A definitive framework to describe the PL properties of TiO2, however, is still lacking. In this work, we report on the PL of nanostructured anatase TiO2 thin films, annealed in different atmospheres (oxidizing and reducing), and consider the effects of different excitation energies and different surrounding media on their PL spectra. A broad PL signal centered around 1.8-2.0 eV is found for all the films with UV excitation in air and in vacuum, while the same measurements in ethanol lead to a blueshift and to intensity changes in the spectra. On the other hand, measurements with different sub-bandgap excitations show PL peaking at 1.8 eV, with an intensity trend only dependent on the thermal treatment and not on the surrounding medium. The results of PL spectroscopy, together with electron paramagnetic resonance spectroscopy, suggest the critical role of oxygen vacancies and Ti3+ ions as radiative recombination centers. The complex relationship between thermal treatments and PL data in the explored conditions is discussed, suggesting the importance of such investigations for a deeper understanding on the relationship between defects in TiO2 and photoactivity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000416" target="_blank" >EF15_003/0000416: Advanced Hybrid Nanostructures for Renewable Energy Applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

  • Volume of the periodical

    123

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    11292-11303

  • UT code for WoS article

    000466988600062

  • EID of the result in the Scopus database

    2-s2.0-85065318607