A note on transcendental analytic functions with rational coefficients mapping Q into itself
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021861" target="_blank" >RIV/62690094:18470/24:50021861 - isvavai.cz</a>
Result on the web
<a href="https://projecteuclid.org/journals/proceedings-of-the-japan-academy-series-a-mathematical-sciences/volume-100/issue-8/A-note-on-transcendental-analytic-functions-with-rational-coefficients-mapping/10.3792/pjaa.100.009.full" target="_blank" >https://projecteuclid.org/journals/proceedings-of-the-japan-academy-series-a-mathematical-sciences/volume-100/issue-8/A-note-on-transcendental-analytic-functions-with-rational-coefficients-mapping/10.3792/pjaa.100.009.full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3792/pjaa.100.009" target="_blank" >10.3792/pjaa.100.009</a>
Alternative languages
Result language
angličtina
Original language name
A note on transcendental analytic functions with rational coefficients mapping Q into itself
Original language description
In this note, the main focus is on a question about transcendental entire functions mapping Q into Q (which is related to a Mahler’s problem). In particular, we prove that, for any t > 0, there is no a transcendental entire function f ∈ Q[[z]] such that f(Q) ⊆ Q and whose denominator of f(p/q) is O(qt), for all rational numbers p/q, with q sufficiently large.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Japan Academy. Series A, Mathematical sciences
ISSN
0386-2194
e-ISSN
—
Volume of the periodical
100
Issue of the periodical within the volume
8
Country of publishing house
JP - JAPAN
Number of pages
3
Pages from-to
43-45
UT code for WoS article
001330419200001
EID of the result in the Scopus database
2-s2.0-85205798015