Lazy Learning of Environment Model from the Past
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00452709" target="_blank" >RIV/67985556:_____/15:00452709 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Lazy Learning of Environment Model from the Past
Original language description
The paper addresses a lazy learning (LL) approach to decision making (DM) problem described in fully probabilistic way. The key idea of LL is to simplify the actual DM problem by using past DM problems similar to the current one. The approach can decrease computation complexity and increase quality of learning when no rich alternative information available. The proposed LL approach helps to learn the environment model based on a proximity of the past and current DM problem with Kullback-Leibler divergence serving as a proximity measure. The implemented algorithm is verified on the real data. The results show that the proposed approach improves prediction quality.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-13502S" target="_blank" >GA13-13502S: Fully Probabilistic Design of Dynamic Decision Strategies for Imperfect Participants in Market Scenarios</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
SPMS 2015
ISBN
978-80-01-05841-1
ISSN
—
e-ISSN
—
Number of pages
170
Pages from-to
1-10
Publisher name
Nakladatelství ČVUT- výroba, Zikova 4, Praha 6
Place of publication
Praha 2
Event location
Drhleny
Event date
Jun 22, 2015
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—