All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Particle Swarm Optimisation for Model Predictive Control Adaptation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00574863" target="_blank" >RIV/67985556:_____/23:00574863 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CSCC58962.2023.00030" target="_blank" >http://dx.doi.org/10.1109/CSCC58962.2023.00030</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CSCC58962.2023.00030" target="_blank" >10.1109/CSCC58962.2023.00030</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Particle Swarm Optimisation for Model Predictive Control Adaptation

  • Original language description

    This paper is focused on parameter identification for Model Predictive Control (MPC). Two identification techniques for parameters of Auto Regressive model with eXogenous input (ARX model) are considered: namely the identification based on Particle Swarm Optimisation (PSO) and Least Square (LS) method. PSO is investigated and LS is presented in square-root form as a reference method for comparison, respectively. The following points are elaborated and discussed: i) parameters’ estimation of ARX model, ii) design of PSO and LS procedures, iii) design of data-driven MPC algorithm in square-root form, iv) concept of possible use of PSO for semiautomatic fine tuning or retuning of MPC parameters. The proposed theoretical procedures are demonstrated using simply reproducible simulation experiments. Application possibilities are discussed towards robotics and mechatronics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/GC23-04676J" target="_blank" >GC23-04676J: Controllable gripping mechanics: Modelling, control and experiments</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 27th International Conference on Circuits, Systems, Communications and Computers - CSCC 2023

  • ISBN

    979-8-3503-3760-0

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    144-149

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Rodos

  • Event date

    Jul 19, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article