On a Particular Class of Lattice-valued Possibilistic Distributions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00350092" target="_blank" >RIV/67985807:_____/11:00350092 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a Particular Class of Lattice-valued Possibilistic Distributions
Original language description
Investigated are possibilistic distributions taking as their values sequences from the infinite Cartesian product of identical copies of a fixed finite subset of the unit interval of real numbers. Uniform and lexicographic partial orderings on the spaceof these sequences are defined and the related complete lattices introduced. Lattice-valued entropy function is defined in the common pattern for both the orderings, naturally leading to different entropy values for the particular ordering applied in thecase under consideration. The mappings on possibilistic distributions with uniform partial ordering under which the corresponding entropy values are conserved as well as approximations of possibilistic distributions with respect to this entropy functionare also investigated.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEICC%2F08%2FE018" target="_blank" >GEICC/08/E018: Logical Models of Reasoning with Vague Information</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
21
Pages from-to
407-427
UT code for WoS article
000297179900003
EID of the result in the Scopus database
—