All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Constrained Hitting Set Problem with Intervals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00548662" target="_blank" >RIV/67985807:_____/21:00548662 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-89543-3_50" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89543-3_50</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-89543-3_50" target="_blank" >10.1007/978-3-030-89543-3_50</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Constrained Hitting Set Problem with Intervals

  • Original language description

    We study a constrained version of the Geometric Hitting Set problem where we are given a set of points, partitioned into disjoint subsets, and a set of intervals. The objective is to hit all the intervals with a minimum number of points such that if we select a point from a subset then we must select all the points from that subset. In general, when the intervals are disjoint, we prove that the problem is in FPT, when parameterized by the size of the solution. We also complement this result by giving a lower bound in the size of the kernel for disjoint intervals, and we also provide a polynomial kernel when the size of all subsets is bounded by a constant. Next, we consider two special cases of the problem where each subset can have at most 2 and 3 points. If each subset contains at most 2 points and the intervals are disjoint, we show that the problem admits a polynomial-time algorithm. However, when each subset contains at most 3 points and intervals are disjoint, we prove that the problem is NP-Hard and we provide two constant factor approximations for the problem.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Structural properties of visibility in terrains and farthest color Voronoi diagrams</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computing and Combinatorics: 27th International Conference, COCOON 2021 Proceedings

  • ISBN

    978-3-030-89542-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    604-616

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Tainan

  • Event date

    Oct 24, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000767965300050