Constrained Hitting Set Problem with Intervals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00548662" target="_blank" >RIV/67985807:_____/21:00548662 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-89543-3_50" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89543-3_50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-89543-3_50" target="_blank" >10.1007/978-3-030-89543-3_50</a>
Alternative languages
Result language
angličtina
Original language name
Constrained Hitting Set Problem with Intervals
Original language description
We study a constrained version of the Geometric Hitting Set problem where we are given a set of points, partitioned into disjoint subsets, and a set of intervals. The objective is to hit all the intervals with a minimum number of points such that if we select a point from a subset then we must select all the points from that subset. In general, when the intervals are disjoint, we prove that the problem is in FPT, when parameterized by the size of the solution. We also complement this result by giving a lower bound in the size of the kernel for disjoint intervals, and we also provide a polynomial kernel when the size of all subsets is bounded by a constant. Next, we consider two special cases of the problem where each subset can have at most 2 and 3 points. If each subset contains at most 2 points and the intervals are disjoint, we show that the problem admits a polynomial-time algorithm. However, when each subset contains at most 3 points and intervals are disjoint, we prove that the problem is NP-Hard and we provide two constant factor approximations for the problem.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Structural properties of visibility in terrains and farthest color Voronoi diagrams</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computing and Combinatorics: 27th International Conference, COCOON 2021 Proceedings
ISBN
978-3-030-89542-6
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
604-616
Publisher name
Springer
Place of publication
Cham
Event location
Tainan
Event date
Oct 24, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000767965300050