Dirac-type conditions for spanning bounded-degree hypertrees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00581953" target="_blank" >RIV/67985807:_____/24:00581953 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jctb.2023.11.002" target="_blank" >https://doi.org/10.1016/j.jctb.2023.11.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2023.11.002" target="_blank" >10.1016/j.jctb.2023.11.002</a>
Alternative languages
Result language
angličtina
Original language name
Dirac-type conditions for spanning bounded-degree hypertrees
Original language description
We prove that for fixed k, every k-uniform hypergraph on n vertices and of minimum codegree at least n/2 + o(n) contains every spanning tight k-tree of bounded vertex degree as a subgraph. This generalises a well-known result of Komlós, Sárközy and Szemerédi for graphs. Our result is asymptotically sharp. We also prove an extension of our result to hypergraphs that satisfy some weak quasirandomness conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. B
ISSN
0095-8956
e-ISSN
1096-0902
Volume of the periodical
165
Issue of the periodical within the volume
March 2024
Country of publishing house
US - UNITED STATES
Number of pages
45
Pages from-to
97-141
UT code for WoS article
001123720100001
EID of the result in the Scopus database
2-s2.0-85177881729