All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dirac-type conditions for spanning bounded-degree hypertrees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00581953" target="_blank" >RIV/67985807:_____/24:00581953 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jctb.2023.11.002" target="_blank" >https://doi.org/10.1016/j.jctb.2023.11.002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jctb.2023.11.002" target="_blank" >10.1016/j.jctb.2023.11.002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dirac-type conditions for spanning bounded-degree hypertrees

  • Original language description

    We prove that for fixed k, every k-uniform hypergraph on n vertices and of minimum codegree at least n/2 + o(n) contains every spanning tight k-tree of bounded vertex degree as a subgraph. This generalises a well-known result of Komlós, Sárközy and Szemerédi for graphs. Our result is asymptotically sharp. We also prove an extension of our result to hypergraphs that satisfy some weak quasirandomness conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory. B

  • ISSN

    0095-8956

  • e-ISSN

    1096-0902

  • Volume of the periodical

    165

  • Issue of the periodical within the volume

    March 2024

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    45

  • Pages from-to

    97-141

  • UT code for WoS article

    001123720100001

  • EID of the result in the Scopus database

    2-s2.0-85177881729