All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Method of rotations for bilinear singular integrals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00364816" target="_blank" >RIV/67985840:_____/11:00364816 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985840:_____/11:00391049

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Method of rotations for bilinear singular integrals

  • Original language description

    Suppose that $/Omega$ lies in the Hardy space $H^1$ of the unit circle $/mathbf S^{1}$ in $/mathbf R^2$. We use the Calderón-Zygmund method of rotations and the uniform boundedness of the bilinear Hilbert transforms to show that the bilinear singular operator with the rough kernel $/mathrm{p.v.} /, /Omega(x/|x|) |x|^{-2}$ is bounded from $L^p(/mathbf R)/times L^q(/mathbf R)$ to $L^r(/mathbf R)$, for a large set of indices satisfying $1/p+1/q=1/r$. We also provide an example of a function $/Omega$ in $L^q(/mathbf S^{ 1})$ with mean value zero to show that the singular integral operator given by convolution with $/mathrm{p.v.} /, /Omega(x/|x|) |x|^{-2}$ is not bounded from $L^{p_1}(/mathbf R)/times L^{p_2} (/mathbf R )$ to $ L^{p}(/mathbf R )$ for $1/2<p<1$, $1<p_1,p_2</infty$, $1/p_1+1/p_2=1/p$, $1/le q</infty$, and $1/p+1/q>2.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/KJB100190901" target="_blank" >KJB100190901: Singular and maximal operators on function spaces</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Mathematical Analysis

  • ISSN

    1938-9787

  • e-ISSN

  • Volume of the periodical

    3

  • Issue of the periodical within the volume

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    99-107

  • UT code for WoS article

  • EID of the result in the Scopus database