On the long-time behavior of some mathematical models for nematic liquid crystals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00374133" target="_blank" >RIV/67985840:_____/13:00374133 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00526-012-0496-1" target="_blank" >http://dx.doi.org/10.1007/s00526-012-0496-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-012-0496-1" target="_blank" >10.1007/s00526-012-0496-1</a>
Alternative languages
Result language
angličtina
Original language name
On the long-time behavior of some mathematical models for nematic liquid crystals
Original language description
A model describing the evolution of a liquid crystal substance in the nematic phase is investigated in terms of two basic state variables: the velocity field u and the director field d, representing the preferred orientation of molecules in a neighborhood of any point in a reference domain. After recalling a known existence result, we investigate the longtime behavior of weak solutions. In particular, we show that any solution trajectory admits a non-empty ?-limit set containing only stationary solutions. Moreover, we give a number of sufficient conditions in order that the ?-limit set contains a single point. Our approach improves and generalizes existing results on the same problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06052" target="_blank" >LC06052: The Nečas Center for Mathematical Modeling</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Calculus of Variations and Partial Differential Equations
ISSN
0944-2669
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
623-639
UT code for WoS article
000314709300008
EID of the result in the Scopus database
—