Compressible fluid flows driven by stochastic forcing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00384232" target="_blank" >RIV/67985840:_____/13:00384232 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/13:10190412
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2012.10.020" target="_blank" >http://dx.doi.org/10.1016/j.jde.2012.10.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2012.10.020" target="_blank" >10.1016/j.jde.2012.10.020</a>
Alternative languages
Result language
angličtina
Original language name
Compressible fluid flows driven by stochastic forcing
Original language description
We consider the Navier?Stokes system describing the motion of a compressible barotropic fluid driven by stochastic external forces. Our approach is semi-deterministic, based on solving the system for each fixed representative of the random variable and applying an abstract result on measurability of multi-valued maps. The class of admissible driving forces includes the (temporal) white noise and the random kicks, considered recently in the context of incompressible fluid models.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
254
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
1342-1358
UT code for WoS article
000312574500015
EID of the result in the Scopus database
—