Prime Lehmer and Lucas numbers with composite indices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00395284" target="_blank" >RIV/67985840:_____/13:00395284 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Prime Lehmer and Lucas numbers with composite indices
Original language description
Let R(L,M) and U(P,Q) denote the Lehmer and Lucas sequences, respectively. It is shown that if R(L,M) and U(P,Q) are nondegenerate, then Rn(L,M) and Un(P,Q) can be prime for composite n only if n 2 {4, 6, 8, 9, 10, 14, 15, 21, 25, 26, 49, 65}. Moreover,all instances in which Rn(L,M) or Um(P,Q) are prime are explicitly given when n 2 {14, 15, 21, 26, 49, 65} and m 2 {6, 8, 10, 15, 25, 26, 65}.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci Quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
194-214
UT code for WoS article
—
EID of the result in the Scopus database
—