A density Corradi-Hajnal theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00444951" target="_blank" >RIV/67985840:_____/15:00444951 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4153/CJM-2014-030-6" target="_blank" >http://dx.doi.org/10.4153/CJM-2014-030-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4153/CJM-2014-030-6" target="_blank" >10.4153/CJM-2014-030-6</a>
Alternative languages
Result language
angličtina
Original language name
A density Corradi-Hajnal theorem
Original language description
We find, for all sufficiently large $n$ and each $k$, the maximum number of edges in an $n$-vertex graph which does not contain $k+1$ vertex-disjoint triangles. This extends a result of Moon [Canad. J. Math. 20 (1968), 96--102] which is in turn an extension of Mantel's Theorem. Our result can also be viewed as a density version of the Corradi-Hajnal Theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Canadian Journal of Mathematics
ISSN
0008-414X
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
4
Country of publishing house
CA - CANADA
Number of pages
38
Pages from-to
721-758
UT code for WoS article
000358391200001
EID of the result in the Scopus database
—