Forelli-Rudin construction and asymptotic expansion of Szegö kernel on Reinhardt domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00452495" target="_blank" >RIV/67985840:_____/15:00452495 - isvavai.cz</a>
Alternative codes found
RIV/47813059:19610/15:#0000498
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Forelli-Rudin construction and asymptotic expansion of Szegö kernel on Reinhardt domains
Original language description
We apply Forelli-Rudin construction and Nakazawa's hodograph transformation to prove a graph theoretic closed formula for invariant theoretic coefficients in the asymptotic expansion of the Szegö kernel on strictly pseudoconvex complete Reinhardt domains. The formula provides a structural analogy between the asymptotic expansion of the Bergman and Szegö kernels. It can be used to effectively compute the first terms of Fefferman's asymptotic expansion in CR invariants. Our method also works for the asymptotic expansion of the Sobolev--Bergman kernel introduced by Hirachi and Komatsu.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Osaka Journal of Mathematics
ISSN
0030-6126
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
4
Country of publishing house
JP - JAPAN
Number of pages
23
Pages from-to
905-927
UT code for WoS article
000365158800002
EID of the result in the Scopus database
2-s2.0-84947434447