All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forelli-Rudin construction and asymptotic expansion of Szegö kernel on Reinhardt domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00452495" target="_blank" >RIV/67985840:_____/15:00452495 - isvavai.cz</a>

  • Alternative codes found

    RIV/47813059:19610/15:#0000498

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forelli-Rudin construction and asymptotic expansion of Szegö kernel on Reinhardt domains

  • Original language description

    We apply Forelli-Rudin construction and Nakazawa's hodograph transformation to prove a graph theoretic closed formula for invariant theoretic coefficients in the asymptotic expansion of the Szegö kernel on strictly pseudoconvex complete Reinhardt domains. The formula provides a structural analogy between the asymptotic expansion of the Bergman and Szegö kernels. It can be used to effectively compute the first terms of Fefferman's asymptotic expansion in CR invariants. Our method also works for the asymptotic expansion of the Sobolev--Bergman kernel introduced by Hirachi and Komatsu.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Osaka Journal of Mathematics

  • ISSN

    0030-6126

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    23

  • Pages from-to

    905-927

  • UT code for WoS article

    000365158800002

  • EID of the result in the Scopus database

    2-s2.0-84947434447