Conditional regularity of very weak solutions to the Navier-Stokes-Fourier system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460241" target="_blank" >RIV/67985840:_____/16:00460241 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/conm/666/13245" target="_blank" >http://dx.doi.org/10.1090/conm/666/13245</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/conm/666/13245" target="_blank" >10.1090/conm/666/13245</a>
Alternative languages
Result language
angličtina
Original language name
Conditional regularity of very weak solutions to the Navier-Stokes-Fourier system
Original language description
We consider a class of (very) weak solutions to the Navier-Stokes-Fourier system describing the time evolution of the density, the absolute temperature, and the macroscopic velocity. It is shown that a weak solution emanating from smooth initial data is regular as long as all the unknowns are bounded and the velocity divergence integrable in the existence interval (0,T). Using the method of relative energy we first show that any weak solution enjoying the above mentioned regularity coincides with a strong one as long as the latter exists. In such a way, the proof reduces to showing that the life span of the strong solution can be extended to the desired existence interval (0,T).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Recent Advances in Partial Differential Equations and Applications
ISBN
978-1-4704-3471-7
ISSN
—
e-ISSN
—
Number of pages
21
Pages from-to
179-199
Publisher name
American Mathematical Society
Place of publication
Providence
Event location
Levico Terme
Event date
Feb 17, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000379793800012