Strong solutions in L^2 framework for fluid-rigid body interaction problem. Mixed case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00494445" target="_blank" >RIV/67985840:_____/18:00494445 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.12775/TMNA.2018.028" target="_blank" >http://dx.doi.org/10.12775/TMNA.2018.028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12775/TMNA.2018.028" target="_blank" >10.12775/TMNA.2018.028</a>
Alternative languages
Result language
angličtina
Original language name
Strong solutions in L^2 framework for fluid-rigid body interaction problem. Mixed case
Original language description
The paper deals with the problem describing the motion of a rigid body inside a viscous incompressible fluid when the mixed boundary conditions are considered. At the fluid-rigid body interface the slip Navier boundary condition is prescribed, having the continuity of velocity just in the normal component, and the Dirichlet condition is given on the boundary of the fluid domain. The existence and uniqueness of the local strong solution is proven by the local transformation and the fixed point argument.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topological Methods in Nonlinear Analysis
ISSN
1230-3429
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
14
Pages from-to
337-350
UT code for WoS article
000445937900016
EID of the result in the Scopus database
2-s2.0-85055206146