All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Zariski locality of quasi-coherent sheaves associated with tilting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00531878" target="_blank" >RIV/67985840:_____/20:00531878 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10420932

  • Result on the web

    <a href="http://dx.doi.org/10.1512/iumj.2020.69.7987" target="_blank" >http://dx.doi.org/10.1512/iumj.2020.69.7987</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1512/iumj.2020.69.7987" target="_blank" >10.1512/iumj.2020.69.7987</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Zariski locality of quasi-coherent sheaves associated with tilting

  • Original language description

    A classic result by Raynaud and Gruson says that the notion of an (infinite-dimensional) vector bundle is Zariski local. This result may be viewed as a particular instance (for n = 0) of the locality of more general notions of quasi-coherent sheaves related to (infinite-dimensional) n-tilting modules and classes. Here, we prove the latter locality for all n and all schemes. We also prove that the notion of a tilting module descends along arbitrary faithfully flat ring morphisms in several particular cases (including the case when the base ring is Noetherian).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Indiana University Mathematics Journal

  • ISSN

    0022-2518

  • e-ISSN

  • Volume of the periodical

    69

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    30

  • Pages from-to

    1733-1762

  • UT code for WoS article

    000565142400008

  • EID of the result in the Scopus database

    2-s2.0-85102167744