Zariski locality of quasi-coherent sheaves associated with tilting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00531878" target="_blank" >RIV/67985840:_____/20:00531878 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10420932
Result on the web
<a href="http://dx.doi.org/10.1512/iumj.2020.69.7987" target="_blank" >http://dx.doi.org/10.1512/iumj.2020.69.7987</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1512/iumj.2020.69.7987" target="_blank" >10.1512/iumj.2020.69.7987</a>
Alternative languages
Result language
angličtina
Original language name
Zariski locality of quasi-coherent sheaves associated with tilting
Original language description
A classic result by Raynaud and Gruson says that the notion of an (infinite-dimensional) vector bundle is Zariski local. This result may be viewed as a particular instance (for n = 0) of the locality of more general notions of quasi-coherent sheaves related to (infinite-dimensional) n-tilting modules and classes. Here, we prove the latter locality for all n and all schemes. We also prove that the notion of a tilting module descends along arbitrary faithfully flat ring morphisms in several particular cases (including the case when the base ring is Noetherian).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Indiana University Mathematics Journal
ISSN
0022-2518
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
1733-1762
UT code for WoS article
000565142400008
EID of the result in the Scopus database
2-s2.0-85102167744