Povzner-Wienholtz-type theorems for Sturm-Liouville operators with singular coefficients
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00563656" target="_blank" >RIV/67985840:_____/22:00563656 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11785-022-01291-y" target="_blank" >https://doi.org/10.1007/s11785-022-01291-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11785-022-01291-y" target="_blank" >10.1007/s11785-022-01291-y</a>
Alternative languages
Result language
angličtina
Original language name
Povzner-Wienholtz-type theorems for Sturm-Liouville operators with singular coefficients
Original language description
We introduce and investigate symmetric operators L associated in the complex Hilbert space L2(R) with a formal differential expressionl[u]:=-(pu′)′+qu+i((ru)′+ru′)under minimal conditions on the regularity of the coefficients. They are assumed to satisfy conditions q=Q′+s,1|p|,Q|p|,r|p|∈Lloc2(R),s∈Lloc1(R),where the derivative of the function Q is understood in the sense of distributions, and all functions p, Q, r, s are real-valued. In particular, the coefficients q and r′ may be Radon measures on R, while function p may be discontinuous. The main result of the paper are two sufficient conditions on the coefficient p which provide that the operator L being semi-bounded implies it being self-adjoint.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Complex Analysis and Operator Theory
ISSN
1661-8254
e-ISSN
1661-8262
Volume of the periodical
16
Issue of the periodical within the volume
8
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
113
UT code for WoS article
000876595000004
EID of the result in the Scopus database
2-s2.0-85140729348