All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

M-harmonic reproducing kernels on the ball

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00577235" target="_blank" >RIV/67985840:_____/24:00577235 - isvavai.cz</a>

  • Alternative codes found

    RIV/47813059:19610/24:A0000151

  • Result on the web

    <a href="https://doi.org/10.1016/j.jfa.2023.110187" target="_blank" >https://doi.org/10.1016/j.jfa.2023.110187</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2023.110187" target="_blank" >10.1016/j.jfa.2023.110187</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    M-harmonic reproducing kernels on the ball

  • Original language description

    Using the machinery of unitary spherical harmonics due to Koornwinder, Folland and other authors, we obtain expansions for the Szegö and the weighted Bergman kernels of M-harmonic functions, i.e. functions annihilated by the invariant Laplacian on the unit ball of the complex n-space. This yields, among others, an explicit formula for the M-harmonic Szegö kernel in terms of multivariable as well as single-variable hypergeometric functions, and also shows that most likely there is no explicit (“closed”) formula for the corresponding weighted Bergman kernels.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-27941S" target="_blank" >GA21-27941S: Function theory and related operators on complex domains</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

    1096-0783

  • Volume of the periodical

    286

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    54

  • Pages from-to

    110187

  • UT code for WoS article

    001099697500001

  • EID of the result in the Scopus database

    2-s2.0-85173266519