M-harmonic reproducing kernels on the ball
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00577235" target="_blank" >RIV/67985840:_____/24:00577235 - isvavai.cz</a>
Alternative codes found
RIV/47813059:19610/24:A0000151
Result on the web
<a href="https://doi.org/10.1016/j.jfa.2023.110187" target="_blank" >https://doi.org/10.1016/j.jfa.2023.110187</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2023.110187" target="_blank" >10.1016/j.jfa.2023.110187</a>
Alternative languages
Result language
angličtina
Original language name
M-harmonic reproducing kernels on the ball
Original language description
Using the machinery of unitary spherical harmonics due to Koornwinder, Folland and other authors, we obtain expansions for the Szegö and the weighted Bergman kernels of M-harmonic functions, i.e. functions annihilated by the invariant Laplacian on the unit ball of the complex n-space. This yields, among others, an explicit formula for the M-harmonic Szegö kernel in terms of multivariable as well as single-variable hypergeometric functions, and also shows that most likely there is no explicit (“closed”) formula for the corresponding weighted Bergman kernels.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-27941S" target="_blank" >GA21-27941S: Function theory and related operators on complex domains</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
1096-0783
Volume of the periodical
286
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
54
Pages from-to
110187
UT code for WoS article
001099697500001
EID of the result in the Scopus database
2-s2.0-85173266519