All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the regularity of weak solutions to the fluid-rigid body interaction problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00585942" target="_blank" >RIV/67985840:_____/24:00585942 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00208-023-02664-0" target="_blank" >https://doi.org/10.1007/s00208-023-02664-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00208-023-02664-0" target="_blank" >10.1007/s00208-023-02664-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the regularity of weak solutions to the fluid-rigid body interaction problem

  • Original language description

    We study a 3D fluid–rigid body interaction problem. The fluid flow is governed by 3D incompressible Navier–Stokes equations, while the motion of the rigid body is described by a system of ordinary differential equations describing conservation of linear and angular momentum. Our aim is to prove that any weak solution satisfying certain regularity conditions is smooth. This is a generalization of the classical result for the 3D incompressible Navier–Stokes equations, which says that a weak solution that additionally satisfy Prodi–Serrin Lr- Ls condition is smooth. We show that in the case of fluid–rigid body the Prodi–Serrin conditions imply W2,p and W1,p regularity for the fluid velocity and fluid pressure, respectively. Moreover, we show that solutions are C∞ if additionally we assume that the rigid body acceleration is bounded almost anywhere in time variable.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Annalen

  • ISSN

    0025-5831

  • e-ISSN

    1432-1807

  • Volume of the periodical

    389

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    46

  • Pages from-to

    1007-1052

  • UT code for WoS article

    001025874100001

  • EID of the result in the Scopus database

    2-s2.0-85164137307