All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Isometries of Lipschitz-free Banach spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00600107" target="_blank" >RIV/67985840:_____/24:00600107 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/24:10492947

  • Result on the web

    <a href="https://doi.org/10.1112/jlms.70000" target="_blank" >https://doi.org/10.1112/jlms.70000</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/jlms.70000" target="_blank" >10.1112/jlms.70000</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Isometries of Lipschitz-free Banach spaces

  • Original language description

    We describe surjective linear isometries and linear isometry groups of a large class of Lipschitz-free spaces that includes, for example, Lipschitz-free spaces over any graph. We define the notion of a Lipschitz-free rigid metric space whose Lipschitz-free space only admits surjective linear isometries coming from surjective dilations (i.e., rescaled isometries) of the metric space itself. We show that this class of metric spaces is surprisingly rich and contains all 3-connected graphs as well as geometric examples such as nonabelian Carnot groups with horizontally strictly convex norms. We prove that every metric space isometrically embeds into a Lipschitz-free rigid space that has only three more points.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the London Mathematical Society

  • ISSN

    0024-6107

  • e-ISSN

    1469-7750

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    36

  • Pages from-to

    e70000

  • UT code for WoS article

    001351918100023

  • EID of the result in the Scopus database

    2-s2.0-85206691785