Isometries of Lipschitz-free Banach spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00600107" target="_blank" >RIV/67985840:_____/24:00600107 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/24:10492947
Result on the web
<a href="https://doi.org/10.1112/jlms.70000" target="_blank" >https://doi.org/10.1112/jlms.70000</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.70000" target="_blank" >10.1112/jlms.70000</a>
Alternative languages
Result language
angličtina
Original language name
Isometries of Lipschitz-free Banach spaces
Original language description
We describe surjective linear isometries and linear isometry groups of a large class of Lipschitz-free spaces that includes, for example, Lipschitz-free spaces over any graph. We define the notion of a Lipschitz-free rigid metric space whose Lipschitz-free space only admits surjective linear isometries coming from surjective dilations (i.e., rescaled isometries) of the metric space itself. We show that this class of metric spaces is surprisingly rich and contains all 3-connected graphs as well as geometric examples such as nonabelian Carnot groups with horizontally strictly convex norms. We prove that every metric space isometrically embeds into a Lipschitz-free rigid space that has only three more points.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
1469-7750
Volume of the periodical
110
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
e70000
UT code for WoS article
001351918100023
EID of the result in the Scopus database
2-s2.0-85206691785