Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F18%3A00502727" target="_blank" >RIV/68081707:_____/18:00502727 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ccr.2018.07.012" target="_blank" >http://dx.doi.org/10.1016/j.ccr.2018.07.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ccr.2018.07.012" target="_blank" >10.1016/j.ccr.2018.07.012</a>
Alternative languages
Result language
angličtina
Original language name
Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents
Original language description
Ruthenium complexes exhibit a broad variety of biological and biomedical activities including anticancer efficiency. The reason is that the octahedral bonding of both Ru(II) and Ru(III) complexes affords an extensive repertoire of three-dimensional architectures, giving the potential for a high degree of site selectivity for binding to their biological targets. The mechanism of biological and biomedical action of ruthenium compounds is connected with their interactions with biomacromolecules. A lot of mechanistic studies revealed disposition of many ruthenium complexes to operate via mechanisms of action involving interactions with DNA, but distinctly different from those of the approved platinum anticancer drugs. In this Review, we discuss major DNA binding modes hitherto identified for ruthenium complexes of biological or biomedical significance and provide some typical examples. The introduction provides the reader with a brief overview of the approaches in the search for the new, transition metal-based agents of biological or biomedical significance to provide the context in which more recent research of DNA binding of ruthenium complexes has been evolved. We then describe main categories of binding modes between DNA and ruthenium compounds, such as coordinative, intercalative, minor groove binding, sequence specificity of DNA binding, the ability of ruthenium compounds to condense and cleave DNA, binding to A- and Z-DNA, DNA quadruplexes and other unusual DNA structures. A number of complexes based on ruthenium(II) centers have been reported to have excellent photophysical and radiosensitizing properties so that DNA photocleavage and synergistic enhancement of DNA damage due to a combined action of ruthenium complexes and ionizing radiation is also discussed. Finally, inhibition of DNA processing enzymes is reviewed as well. We believe that such a synthesis of disparate DNA binding modes of ruthenium complexes will help to generate new ruthenium complexes of improved biological and biomedical significance. (C) 2018 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Coordination Chemistry Reviews
ISSN
0010-8545
e-ISSN
—
Volume of the periodical
376
Issue of the periodical within the volume
DEC 1 2018
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
75-94
UT code for WoS article
000447096000005
EID of the result in the Scopus database
—