All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Variability in statin-induced changes in gene expression profiles of pancreatic cancer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F17%3A00486292" target="_blank" >RIV/68378050:_____/17:00486292 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11110/17:10362081 RIV/60461373:22330/17:43913331 RIV/00064165:_____/17:10362081

  • Result on the web

    <a href="http://dx.doi.org/10.1038/srep44219" target="_blank" >http://dx.doi.org/10.1038/srep44219</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/srep44219" target="_blank" >10.1038/srep44219</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Variability in statin-induced changes in gene expression profiles of pancreatic cancer

  • Original language description

    Statins, besides being powerful cholesterol-lowering drugs, also exert potent anti-proliferative activities. However, their anti-cancer efficacy differs among the individual statins. Thus, the aim of this study was to identify the biological pathways affected by individual statins in an in vitro model of human pancreatic cancer. The study was performed on a human pancreatic cancer cell line MiaPaCa-2, exposed to all commercially available statins (12 mu M, 24 h exposure). DNA microarray analysis was used to determine changes in the gene expression of treated cells. Intracellular concentrations of individual statins were measured by UPLC (ultra performance liquid chromatography)-HRMS (high resolution mass spectrometer). Large differences in the gene transcription profiles of pancreatic cancer cells exposed to various statins were observed, cerivastatin, pitavastatin, and simvastatin being the most efficient modulators of expression of genes involved namely in the mevalonate pathway, cell cycle regulation, DNA replication, apoptosis and cytoskeleton signaling. Marked differences in the intracellular concentrations of individual statins in pancreatic cancer cells were found (>11 times lower concentration of rosuvastatin compared to lovastatin), which may contribute to inter-individual variability in their anti-cancer effects. In conclusion, individual statins exert different gene expression modulating effects in treated pancreatic cancer cells. These effects may be partially caused by large differences in their bioavailability. We report large differences in gene transcription profiles of pancreatic cancer cells exposed to various statins. These data correlate to some extent with the intracellular concentrations of statins, and may explain the inter-individual variability in the anti-cancer effects of statins.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    jaro

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000395985400001

  • EID of the result in the Scopus database