All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Time-resolved optical emission spectroscopy of a unipolar and a bipolar pulsed magnetron sputtering discharge in an argon/oxygen gas mixture with a cobalt target

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F19%3A00518879" target="_blank" >RIV/68378271:_____/19:00518879 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0303898" target="_blank" >http://hdl.handle.net/11104/0303898</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ab54e8" target="_blank" >10.1088/1361-6595/ab54e8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Time-resolved optical emission spectroscopy of a unipolar and a bipolar pulsed magnetron sputtering discharge in an argon/oxygen gas mixture with a cobalt target

  • Original language description

    Reactive high power impulse magnetron sputtering (HiPIMS) of a cobalt cathode in pure argon gas and with different oxygen admixtures was investigated by time-resolved optical emission spectroscopy (OES) and time-integrated energy-resolved mass spectrometry. The HiPIMS discharge was operated with a bipolar pulsed power supply capable of providing a large negative voltage with a typical pulse width of 100 μs followed by a long positive pulse with a pulse width of about 350 μs. The HiPIMS plasma in pure argon is dominated by Co+ ions. With the addition of oxygen, O+ ions become the second most prominent positive ion species. OES reveals the presence of Ar I, Co I, O I, and Ar II emission lines. The transition from an Ar+ to a Co+ ion sputtering discharge is inferred from time-resolved OES. The enhanced intensity of excited Ar+* ions is explained by simultaneous excitation and ionisation induced by energetic secondary electrons from the cathode.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plasma Sources Science & Technology

  • ISSN

    0963-0252

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    Nov

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000505707300001

  • EID of the result in the Scopus database

    2-s2.0-85079549910