All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary Optimization of Multimodal Functions Using Radial Basis Function Networks

Result description

This paper is aimed at optimization of black-box functions. We assume that these functions are time demanding and therefore our goal is to minimize the number of evalua- tions of these functions. As one of the today's most promising algorithms, the radial basis function network (RBFN) is presented. The novelty in our approach is the use of an evolutionary algorithm GRADE. Also several scenarios of creating new points in the process of the approximation are presented. In comparison with the original approach, the number of needed evaluations of a test function is reduced approximately by a factor of two. To show the ability of the proposed methodology, the suite of twenty multi-modal functions is used along with one real-world problem of optimal controlof structures undergoing large displacements.

Keywords

approximationevolutionary algorithmsgenetic algorithmsglobal optimizationmulti-modal problemsradial basis function network

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary Optimization of Multimodal Functions Using Radial Basis Function Networks

  • Original language description

    This paper is aimed at optimization of black-box functions. We assume that these functions are time demanding and therefore our goal is to minimize the number of evalua- tions of these functions. As one of the today's most promising algorithms, the radial basis function network (RBFN) is presented. The novelty in our approach is the use of an evolutionary algorithm GRADE. Also several scenarios of creating new points in the process of the approximation are presented. In comparison with the original approach, the number of needed evaluations of a test function is reduced approximately by a factor of two. To show the ability of the proposed methodology, the suite of twenty multi-modal functions is used along with one real-world problem of optimal controlof structures undergoing large displacements.

  • Czech name

    Evoluční optimalizace vícemodálních funkcí s využitím sítí s radiální bází

  • Czech description

    Cílem článku je optimalizace tzv. black-box funkcí. Cílem bylo prozkoumat požití sítí s radiální bází (RBFN), které se jeví jako slibný algoritmus. Novinkou je využití vlastního evolučního algoritmu GRADE k nalezení optima RBFN aproximace. V porovnání soriginální prací se podařilo snížít počet potřebných evaluací na polovinu. Praktické využití je ukázáno na sadě dvaceni matematických optimalizačních problémů a jedné reálné úloze z oblasti řízení konstrukcí za velkých deformací.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2008 AIAA Meeting Papers on Disc, Vol. 13, No. 12 (MAO)

  • ISBN

    978-1-56347-947-2

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

  • Publisher name

    American Institute of Aeronautics and Astronautics

  • Place of publication

    Reston

  • Event location

    Victoria

  • Event date

    Sep 10, 2008

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article