All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sequential weak continuity of null Lagrangians at the boundary

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00216040" target="_blank" >RIV/68407700:21110/14:00216040 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985556:_____/14:00392445

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00526-013-0621-9" target="_blank" >http://dx.doi.org/10.1007/s00526-013-0621-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00526-013-0621-9" target="_blank" >10.1007/s00526-013-0621-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sequential weak continuity of null Lagrangians at the boundary

  • Original language description

    We show weak* in measures on / weak-L1 sequential continuity of u -> f (x,delu) : W1,p(;Rm) -> L1(), where f (x, .) is a null Lagrangian for x element , it is a null Lagrangian at the boundary for x element and | f (x, A)| <= C(1 + |A|p). We also give aprecise characterization of null Lagrangians at the boundary in arbitrary dimensions. Our results explain, for instance, why u -> det delu : W1,n(;Rn) -> L1() fails to be weakly continuous. Further,we state a newweak lower semicontinuity theorem for integrands depending on null Lagrangians at the boundary. The paper closes with an example indicating that a well-known result on higher integrability of determinant by Müller (Bull. Am. Math. Soc. New Ser. 21(2): 245?248, 1989 ) need not necessarily extendto our setting. The notion of quasiconvexity at the boundary due to J.M. Ball and J. Marsden is central to our analysis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F10%2F0357" target="_blank" >GAP201/10/0357: Modern mathematical and computational models for inelastic processes in solids</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Calculus of Variations and Partial Differential Equations

  • ISSN

    0944-2669

  • e-ISSN

  • Volume of the periodical

    49

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    1263-1278

  • UT code for WoS article

    000334679400018

  • EID of the result in the Scopus database