All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analysis of Finfet Characteristics with Gate Length Scalling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00229505" target="_blank" >RIV/68407700:21230/15:00229505 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analysis of Finfet Characteristics with Gate Length Scalling

  • Original language description

    The effect of gate length variations of a FinFET device (6 x 7 nm width and height) by performing 3D Silvaco TCAD simulations was investigated. In addition, comparative Atomistics ToolKit by QuantumWise simulations were done, with a view to TCAD / ATK functionality at quantum effects. Both systems use Non-Equilibrium Green Functions (NEGF) for electron quantum transport simulation. The ATK tool uses the real atom positions in the device crystal lattice for the Density Functional Theory (DFT) based calculations moreover. It is found that the gate length influences the drain current mostly for small voltages. Short gate transistors show the saturation current for clearly lower voltages, the saturation current for longer gates is achieved for higher voltages but get lower values. Electron transmission functionality of system's energy has been analyzed as well. The ATK uses more precise quantum models, but the time consumption is enormous for the relative large structures as FinFET. 3D TCAD quantum model is sufficient for the faster analysis of quantum semiconductor device.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/GAP108%2F11%2F0894" target="_blank" >GAP108/11/0894: Growth and processing of graphene layers on silicon carbide</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2014, 6TH INTERNATIONAL CONFERENCE

  • ISBN

    978-80-87294-53-6

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    814-819

  • Publisher name

    Technická universita Ostrava - Vysoká škola báňská

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Nov 5, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000350636300139