The factorisation property of l(infinity)(X-k)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355106" target="_blank" >RIV/68407700:21230/21:00355106 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1017/S0305004120000304" target="_blank" >https://doi.org/10.1017/S0305004120000304</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0305004120000304" target="_blank" >10.1017/S0305004120000304</a>
Alternative languages
Result language
angličtina
Original language name
The factorisation property of l(infinity)(X-k)
Original language description
In this paper we consider the following problem let X-k, he a Banach space with a normalised basis (e((k,j)))(j), whose hiorthogonals are denoted by (e*((k,j)))(j), for k epsilon N, let Z = l(infinity)(X-k : k epsilon N) be their l(infinity)-sum, and let T : Z -> Z be a bounded linear operator with a large diagonal, i.e.,
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Proceedings of the Cambridge Philosophical Society
ISSN
0305-0041
e-ISSN
1469-8064
Volume of the periodical
171
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
28
Pages from-to
421-448
UT code for WoS article
000684260600009
EID of the result in the Scopus database
2-s2.0-85097632993