Biologically inspired robot body models and self-calibration
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362313" target="_blank" >RIV/68407700:21230/22:00362313 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-642-41610-1_201-1" target="_blank" >https://doi.org/10.1007/978-3-642-41610-1_201-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-41610-1_201-1" target="_blank" >10.1007/978-3-642-41610-1_201-1</a>
Alternative languages
Result language
angličtina
Original language name
Biologically inspired robot body models and self-calibration
Original language description
Typically, mechanical design specifications provide the basis for a robot model and kinematic and dynamic mappings are constructed and remain fixed during operation. However, there are many sources of inaccuracies (e.g., assembly process, mechanical elasticity, friction). Furthermore, with the advent of collaborative, social, or soft robots, the stiffness of the materials and the precision of the manufactured parts drops and Computer-aided design (CAD) models provide a less accurate basis for the models. Humans, on the other hand, seamlessly control their complex bodies, adapt to growth or failures, and use tools. Exploiting multimodal sensory information plays a key part in these processes. In this chapter, differences between body representations in the brain and robot body models are established and the possibilities for learning robot models in biologically inspired ways are assessed.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
<a href="/en/project/GX20-24186X" target="_blank" >GX20-24186X: Whole-body awareness for safe and natural interaction: from brains to collaborative robots</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Encyclopedia of Robotics
ISBN
978-3-642-41610-1
Number of pages of the result
14
Pages from-to
—
Number of pages of the book
4000
Publisher name
Springer
Place of publication
Berlin & Heidelberg
UT code for WoS chapter
—